So, I know this is the second post in just a few days, and very few people (of those few who actually read this blog) have probably even had the chance to read what I posted last night, but I had to post this. I consider myself pretty up to date on what's going on out there but some of the stuff in this article blew me away.
You'll have to ignore some of his typing errors, and excuse his constant sales pitch (though I did edit out some of them - especially ignore the 'get rich' spot because that is like many of the 100 excercises with just this ball) to invest in biotech, and the length isn't exactly small reading, but it is fascinating what they are doing now. Anyway, here you are:
The Coming BioTech Bubble"So now, I'm going to give you an overview of some of the truly remarkable breakthroughs in biotech, as John Mauldin has asked me to do. First, however, I'll tell you how to live longer, get richer and feel better, as promised.
It is this: Optimal vitamin D serum blood levels, attained through sunlight or supplementation, dramatically reduce the risk of most serious diseases by an astonishing 50 to 80 percent. These diseases include osteoporosis, osteomalacia, hypertension and a range of cancers from breast and colon to deadly melanoma skin cancers.
Yes, that's right. The risk of contracting the really nasty skin cancers can be dramatically lowered by getting moderate, sensible sunshine or through vitamin D supplementation. Non-melanoma skin cancers do increase somewhat with sun exposure, especially with sun burns but they are relatively benign and are easily detected and removed.
This is not the end of the list, though. The big killers and most expensive diseases respond similarly to adequate D. I'm talking about cardiovascular disease and stroke. So do type 1 diabetes, type 2 to a lesser extent, rheumatoid arthritis, peripheral vascular disease, multiple sclerosis, dementia, autoimmune diseases and apparently even viral diseases such as H1N1 and AIDs. I emphases that some of these diseases are not "cured" by sufficient D as some bone diseases are. The risk of developing other diseases and the severity of their symptoms if you do is much lower, however, if you are not vitamin D deficient.
There is, by the way, no simple prescription in terms of sunlight exposure or vitamin D supplementation because age, skin color, body weight and even location play huge factors in your circulating blood levels, which should be at least 40 ng/ml of 25-hydroxyvitamin D. Ideally, you should consult a physician who can prescribe blood tests to see where your D levels are.
This information is not new but the odds are that you are unaware of it unless you read the New England Journal of Medicine or other scientific publications. I'll include links at the end of this article for you to investigate this matter further, including the NEJM paper I just referred to.
This new consensus regarding vitamin D must be viewed as a sign of the biotech revolution on the horizon. Just as new IT and nanotech sensing technologies have shed light on the function of vitamin D, they are leading scientists to entirely unexpected discoveries in other areas as well. More importantly, these discoveries, unlike sunshine, can be patented. You, therefore, can invest in the companies that own the IP and reap transformational profits.
Some of the contributing technologies include supercomputing, without which the human genome could not have been decoded. We now know, by the way, that the activity of about 2000 human genes is moderated by vitamin D. Supercomputing has also enabled an entire new means of biological experimentation called in silico. Simply put, in silico experimentation uses 3D computer models of organic molecules. These models, existing in virtual reality environments, can be manipulated at incredibly high speeds to quickly yield results that once would have taken decades in physical labs.
Regenerative MedicineThis is numero uno; stem cell technologies. They may not be first to market, but the technology's potential is unparalleled in history for reasons I'll explain. Other huge transformational technologies may treat and prevent currently incurable diseases before regenerative medicine matures. Stem cells, however, are unique in their ability to rejuvenate the human biology. I'm not, by the way, talking about obsolete embryonic stem cells (eSCs). Despite the political rhetoric, the scientific action has moved far beyond eSCs to several other forms of stem cells.
Unless you are reading scientific publications, however, you probably wouldn't know this. In fact, the scientific literature itself is usually outdated because leading stem cell scientists are not working in academia with its "publish or perish" pressures. The last thing that scientists in start-ups and small caps want to do is give away the inside information about their innovations. As a result, almost none of the real breakthrough news in stem cell or other cutting edge science makes it to the mainstream or financial medias. Let me prove my point with a pop quiz.
Q: How long will it be before scientists can duplicate the army of clones scenario that George Lucas portrayed in Star Wars II: Attack of the Clones. In other words, when will scientists be able to swab the inside of your mouth, take a single cell and turn it into an unlimited horde of healthy babies, each with your identical DNA?
A: If you said "several years ago," you are right. This is routine, well-established science at this point. We don't believe anybody has actually used this ability with humans yet, for obvious ethical reasons. Scientists, however, have taken adult skin cells from mice and transformed them into a new kind of stem cell called an induced pluripotent stem (iPS) cells. Those iPS cells have, in turn, been allowed to develop into healthy adult mice.
As dramatic as this ability is, it is not particularly useful outside of agriculture where the technology will be used to produce perfect livestock. The real promise of iPS cells is "potentiation" for specific medical needs. What I'm talking about is taking an iPS cell, which is fundamentally identical to an embryonic stem cell, and programming it to repair aged or damage tissues.
Potentiated iPS cells could be be grown, using your own cells, that would rejuvenate your heart muscles, one of the muscle tissues that cannot regenerate on its own. These cells could be programmed to become fresh cartilage, another cell type that doesn't regenerate, thus giving the aged and arthritis sufferers youthful pain-free joints.
We're looking at non-surgical organ replacement, one cell at a time. An injection or series of injections of these potentiated stem cells would, for example, transform an aged, damaged liver into a healthy youthful organ.
Someone suffering from severe diabetes could get off-the-shelf islet cells that produce insulin, saving their lives and allowing them to live normal lives. People who are blind due to macular degeneration could see again. You name it, these extraordinary cells will do it. In fact, they did do it. Every cell in your body, cartilage, kidney, heart, skin and bones, started out as a stem cell.
So let's have another quiz.
Q: How long will it be before the programming code for cartilage stem cells is cracked.
A: Once again, the answer is that it has already happened. Top private industry scientists have decoded the secrets of hundreds of cell types and are experimenting now with cartilage, nerve and other cell types. Human tests, probably offshore because of the FDA's snail pace, will begin if not this year, then next year. These therapies will be offered initially outside the United States. Many of us believe that, once Americans begin coming back home healed of conditions previously thought incurable, the FDA will bow to public demand. Regenerative medicine will inevitably be fast-tracked.
(Note: there will be lots of scams offering all sorts of purported stem cell therapies offshore offering "cures" for all sorts of diseases. Don't buy them or subject yourself to them. The legitimate players will surface over time, associated with real hospitals and researchers.)
There is one final aspect to the regenerative medicine picture that makes it especially attractive to long-term investors. Let me tell you a story to make this point.
Last year, I was in Canada speaking at a financial conference about emerging biotechnologies. I was privileged to share the forum with Harvard futurist, best-selling author and venture capitalist, Juan Enriquez. Enriquez is a major force in cellular engineering, working closely with the genius ex-surfer Craig Venter who cracked the human genome for a fraction of the cost and in a fraction of the time that the US government had allotted. President Clinton, in fact, issued an emergency executive order denying Venter IP rights to the genome he had decoded.
Today, Venter is applying his genetic genius to the other end of DNA complexity. He is developing the tools to reprogram the genetically simplest life: microorganisms. Venter compares DNA to computer code and scientists following his work say he will create the first artificial life form, probably this year. It will be, in fact, a designer bacteria. More importantly, his next step is engineer algae that secrete high-grade hydrocarbons that can be refined into transportation fuels. ExxonMobil believes him and gave Venter's research firm $300 million to work on the project.
Anyway, I asked Venter's associate, the venture capitalist Enriquez, why his biotech funds weren't invested in stem cells. His answer was straightforward. He said that the IP was already tied up. This is an astonishing fact. The intellectual property, the patents, for this phenomenal rejuvenative technology is already applied for or awarded.
The IP structure of regenerative medicine is unlike most other pharmaceutical or biotech industries, including cellular engineering. Traditional drug discovery, in fact, consists largely of identifying which of many molecules can do a certain thing. Frequently, only a small percentage of possible candidates are identified and then, through an elimination process, one is identified for testing and approval.
Cellular engineering is more dramatic but the potential number of new biofuel-producing algae is theoretically unlimited. Anyone who creates a new breed of algae can patent only that microorganism.
This is not the case with stem cells. There are very few "pluripotent" stem cell types that can become all the other cells. Already, the means of producing these cells and, in many cases, the cells themselves have been patented or applied for.
To invest in algae biofuels, which I probably will do, I will have to pick the most likely winners from a field of players to guarantee owning the big transformational winners. This is possible but it is much riskier than the stem cell space. This is because the number of companies that hold the bulk of the really valuable IP and patent applications can be counted on one hand. If big pharma wants into the regenerative medicine business, and they will, they're going to have to pay these tiny small caps for the right. This reduces the risk of buying losers enormously.
RNA InterferenceThere are many standalone breakthroughs in biotech and I'll mention a few in a bit. First, I want to tell you about the other big biotechnology industry, RNA interference. RNAi is a perfect fit with regenerative medicine, which has the power to restore damaged and aged tissues but does not attack the causes of diseases. This is where RNA interference fits in.
This field is actually younger even than stem cell sciences. The scientific paper that broke open the field was published in 1998 and the Nobel Prize for medicine was awarded to its authors in just four years ago in 2006. RNAi had one major advantage over regenerative medicine, however. It was not effected by the political and moral controversies that regenerative medicine faced before it moved past embryonic stem cells. As a result, researchers have had no trouble getting government and private funding.
Here is the overview. Our DNA is, in effect, locked and protected in a cellular clean room without a door. DNA communicates with the rest of the body by sending out messages with orders to turn genes on or off. Those messages are RNA, or ribonucleic acid. Therefore, the right RNA sequence can be introduced to the body to mimic those messages, which are then identified as invaders. The provokes the body to treat certain of its own RNA messages as invaders and destroy them.
This is RNA interference and it provides the ability to control any of the genes in our body and the proteins they produce. Those proteins, in turn, are the key to most human diseases. RNAi can both increase and decrease these proteins, providing cures for innumerable diseases. The companies that own those therapies will, in turn, become new pharm giants or they will be acquired by existing pharma.
RNAi researchers are working on drugs that could reduce production of bad cholesterol or increase production of the good form. RNAi could be used to turn off the gene that allows cancers to develop capillary networks. Similarly, it has been demonstrated to turn off the gene that provokes the excess blood delivery that causes wet macular degeneration. It could moderate the ability of the body to store fat or increase muscle mass. In could turn off hypertension or insulin resistance as well as neoplasias such as tumors, infections, and neurodegenerative disorders like Parkinson's and Alzheimer's Disease.
For the first time, science is looking not to treat symptoms, but to actually stop the gene functions that cause diseases. This is truly a revolution. The challenge to this remarkably young science now is the actual delivery of RNAi drugs to cells. We know they work in the lab but RNA molecules are large and fragile, so they don't penetrate cellular membranes under normal circumstances. Additionally, the body tends to clear itself of RNAi drugs through the kidneys or inside the cell itself. Nuclease, which exists inside the cell, also breaks down RNA.
For this reason, a number of delivery mechanisms are being developed to safely transport the RNA as a payload. A handful of small companies with superb talent and IP are racing to perfect their own varying solutions. Each has a different approach to solving the delivery problem but all have demonstrated efficacy. At this point, we don't know which will yield the big solutions. It appears increasingly likely, however, that different platforms will be best suited for different RNAi applications. Each has huge profit potential. RNAi drugs are in trials and big pharm has already snapped up one small cap player.
The Nanotech/IT/Biotech ConvergenceI've already mentioned cellular engineering. Craig Venter calls cells hardware and DNA software. He treats DNA like the ones and zeroes in current software. The same IT/biotech convergence is also evident in new in silico experimentation.
Nanotechnologies are contributing indirectly to the explosion in biotech innovation indirectly through new lithographic chip fabrication techniques that increase computer speed and power. The decoding of the stem cell potentiation process relies on this power and would have been impossible only ten years ago. Nanotechnologies are also directly impacting a whole range of biotech applications by allowing increasingly smaller interventions.
I read very recently an editorial in the Wall Street Journal by a writer and research at Ethics and Public Policy Center. In it, he basically declares Richard Feynman's original vision of nanotechnologies a bust. He obviously isn't reading my newsletter because we are currently seeing animal tests of new medicines that combing nanotech polymer structures with biological parts in ways that trick and attack viruses. Already on the market are nanotech sensing systems using submicrosopic biological components married to metal molecules that provide nearly instantaneous diagnoses of a rapidly expanding range of pathogens.
These sensors are going to power an even larger revolution in personalized medicine. For those unfamiliar with the concept, allow me to explain.
Currently, medicine is, to a large degree, a "one size fits all" proposition. Doctors watch for adverse effects and check personal and family histories. Medical technologies, however, are designed for the general population, not individuals.
That's going to change.
We know that many current treatments work on some people, yet not others. Some drugs are safe for many people, but have dangerous side effects for others. Some are just the opposite. This is because all of us have individual differences in our genetic code based on heredity and environment. Even slight differences can lead to very different reactions to medications.
This has created serious regulatory problems. Drugs are denied regulatory approval not because they do not work, but because some fraction of the population suffers adverse effects. As a result, patients are often denied incredibly effective therapies simply because they are not universally effective.
This shockingly primitive state of affairs exists because, until very lately, we simply have not had the tools to get to the genetic roots of disease. Scientists and pharmaceutical companies haven't precisely known how a particular drug's chemical profile interacts with a genetic one. Medical science, in turn, has been unable to tailor drugs to work with a specific genetic makeup. That is rapidly changing.
The Impact of the GenomeWith the mapping of the genome, scientists can now identify single genes and their individual expressions. Nanotech biosensors can identify genetic characteristics in individuals so that individual reactions to drugs can be known before they are taken. It is meaningful, from the investor's perspective, that Dr. Francis Collins, the head of the Human Genome Project, now heads the National Institutes of Health. Collins has long been a prominent champion for using the knowledge gained from human genome to accelerate personalized medicine.
Collins has also stated that genomics is currently where the computer industry was back in the 1970s - at the beginning of a technological revolution. While he was speaking in scientific terms, we should remember that the '70s was also the right time to begin investing in a diversified portfolio of breakthrough computer technologies.
I believe this is true across the board for a range of revolutionary biotechnologies. I also like to remind readers that important innovations traditionally do not slow down during economic turn downs. The Great Depression, in fact, is considered by many to be one of the most important periods in the history of innovation.
What I'm hearing now, talking to people who range from Nobel Prize winners to CEOs of biotech start-ups and small caps, is that the world is going to change very soon in ways that no one is prepared for. Our lives are going to be significantly better and longer.
I also like to point out that private investors will not only profit from this revolution, they will power it. This is especially meaningful because one of the most dramatic impacts of these new technologies is longer life spans. By investing in regenerative medicine and other important biotechnologies, you are helping extend your own life. Traditionally, financial analysts have always told us that we should invest more conservatively as we age, with less of our portfolio in speculative higher-risk stocks.
For the first time in history, I believe this is exactly the wrong advice. You don't know how long you are going to live and, with these new therapies, it could be much longer than you've been led to believe. By investing as a younger person, you might actually make it so.
One last thing, here is the link regarding vitamin D that I promised.
http://www.vitamindhealth.org/